Ch. 11 Conics

Circle

Ellipse
Hyperbola

Parabola

Examples of Parabolas

> Examples of Parabolas

GEOMETRIC DEFINITION OF A PARABOLA:

Axis

The set of all points that are equidistant from
a fixed point (called the focus) and a fixed line (called the directrix).

No notes...just read through the information!

GEOMETRIC DEFINITION OF A PARABOLA:

 parabola is halfway between the focus and the directrix.$$
\begin{gathered}
\text { Equations: } \\
x^{2}=4 p y \\
\text { or } y^{2}=4 p x
\end{gathered}
$$

Equations are listed on provided formula sheet!

NOTES: add details to provided formula sheet

GEOMETRIC DEFINITION OF A PARABOLA:

The vertex of the parabola is halfway between the focus and the directrix.

The focal diameter will help determine if the parabola is wide or narrow.

Add notes to pink sheet as needed:

Equations and Graphs of Parabolas

Graph \#11-21odd on front, show work for all other problems on the back.

Label the focus, vertex, and directrix for the given graphs:
4.
(a) $x^{2}=12 y{ }_{p=3}^{4 p=12}$
(b) $y^{2}=12 x$ $4 p=12$ $p=3$

directrix $x=-3$

$$
\text { vertex }(0,0)
$$

focus $(3,0)$

11-21odd
(a) Find the focus, directrix, focal diameter.
(b) Sketch graph, include all values from part a
11.

directrix $y=-2$

down 2 from vortex
(a) Find the focus, directrix, focal diameter.
(b) Sketch graph, include all values from part a
13. $\mathbf{y}^{2}=-24 x$
$4 p=-24 \quad$ focal diameter

$$
=|-24|=\frac{24}{12+12}
$$

(a) Find the focus, directrix, focal diameter.
(b) Sketch graph, include all values from part a
15. $\boldsymbol{y}=-\frac{1}{8} \boldsymbol{x}^{2} \begin{aligned} & \text { Solve for } \text { (} x^{2} \text { first }\end{aligned}$

$$
\begin{gathered}
(-8) y=(-8)-\frac{1}{8} x^{2} \\
-8 y=x^{2}
\end{gathered}
$$

(or) $x^{2}=-88 y$

$$
p=-2 \text { focus }(,)
$$

$$
\begin{aligned}
& 4 p=-8 \\
& \text { focal diameter }
\end{aligned}
$$

directrix

